Affiliation:
1. Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
Abstract
MicroRNAs target complementary mRNAs for degradation or translational repression, reducing or preventing protein synthesis. In C. elegans, the transcription factor HBL-1 (Hunchback-like 1) promotes early larval (L2) stage cell-fates, and the let-7-family microRNAs temporally down-regulate HBL-1 to enable the L2-to-L3 cell-fate progression. In parallel to let-7-family microRNAs, the conserved RNA binding protein LIN-28 and its downstream gene lin-46, also act upstream of HBL-1 in regulating the L2-to-L3 cell-fate progression. The molecular function of LIN-46, and how the lin-28-lin-46 pathway regulates HBL-1, are not understood. Here, we report that the regulation of HBL-1 by the lin-28-lin-46 pathway is independent of the let-7/lin-4 microRNA complementary sites (LCSs) in the hbl-1 3'UTR, and involves a stage-specific post-translational regulation of HBL-1 nuclear accumulation. We find that LIN-46 is necessary and sufficient to prevent nuclear accumulation of HBL-1. Our results illuminate that the robust progression from L2 to L3 cell-fates depends on the combination of two distinct modes of HBL-1 down-regulation: decreased synthesis of HBL-1 via let-7-family microRNA activity, and decreased nuclear accumulation of HBL-1 via action of the lin-28-lin-46 pathway.
Funder
National Institutes of Health
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献