Arterial hemodynamics and mechanical properties after circulatory intervention in the chick embryo

Author:

Lucitti Jennifer L.1,Tobita Kimimasa1,Keller Bradley B.1

Affiliation:

1. Division of Pediatric Cardiology, Department of Pediatrics,Children's Hospital of Pittsburgh of UPMC, Rangos Research Center Room 3320E,3460 Fifth Ave, Pittsburgh, PA 15213, USA

Abstract

SUMMARY Altered blood pressure and flow impact cardiac function during morphogenesis. How the arterial system supports cardiac morphogenesis after circulatory disruptions is not well characterized. We manipulated arterial flow via left atrial ligation (LAL) or arterial load viaright vitelline artery ligation (VAL) in Hamburger-Hamilton (HH) stage 21 chick embryos. Embryos were reincubated for 1 h (HH21), 14 h (HH24) or 30 h(HH27). At each stage we measured simultaneous dorsal aortic blood pressure and flow, and calculated arterial compliance, impedance and hydraulic power. LAL acutely reduced stroke volume (Vs), cardiac output(Q̇) and hydraulic power. Arterial pressure was preserved by a compensatory increase in characteristic impedance and decrease in compliance. Impedance parameters and compliance normalized by HH24 and all parameters normalized by HH27. VAL acutely increased arterial resistance. Embryos maintained arterial pressure by decreasing Vs and Q̇. These parameters remained altered through HH27. In summary, despite the intervention, compensatory alterations in Vs and arterial resistance maintained arterial pressure and fraction of oscillatory power within a narrow range. These results suggest that the maintenance of arterial pressure and circulatory energy efficiency, but not arterial flow, is critical to embryogenesis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3