Contractile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers

Author:

Edman K. A. P.1

Affiliation:

1. Department of Physiological Sciences, Biomedical Centre, F11,University of Lund, S-221 84 Lund, Sweden

Abstract

SUMMARY Single fibers, 25-40 μm wide and 0.5-0.7 mm long, were isolated from the flexor digitorum brevis muscle of the mouse. Force and movement were recorded(21-27°C) from the fiber as a whole and, in certain experiments, from a short marked segment that was held at constant length by feedback control. The maximum tetanic force, 368±57 kN/m2 (N=10), was not significantly different from that recorded in frog muscle fibers at equal temperature. However, the rising phase of the tetanus was considerably slower in the mammalian fibers, 202±20 ms (N=17) being required to reach 90% of maximum tetanic force as compared with 59±4 ms(N=20) in the frog muscle fibers. Similar to the situation in frog muscle fibers, the force-velocity relation exhibited two distinct curvatures located on either side of a breakpoint near 80% of the isometric force. Maximum speed of shortening was 4.0±0.3 fiber lengths s-1(N=6). The relationship between tetanic force and sarcomere length was studied between 1.5 and 4.0 μm sarcomere spacings, based on length-clamp recordings that were free of `tension creep'. There was a flat maximum (plateau) of the length-tension relation between approximately 2.0 and 2.4 μm sarcomere lengths. The descending limb of the length-tension relation (linear regression) intersected the length axis (zero force) at 3.88μm and reached maximum force at 2.40 μm sarcomere length. The slope of the descending limb is compatible with a thick filament length of 1.63 μm and an average thin filament length of 1.10 μm. These values accord well with recent electron microscope measurements of myofilament length in mammalian muscle.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3