Affiliation:
1. Department of Physiological Sciences, Biomedical Centre, F11,University of Lund, S-221 84 Lund, Sweden
Abstract
SUMMARY
Single fibers, 25-40 μm wide and 0.5-0.7 mm long, were isolated from the flexor digitorum brevis muscle of the mouse. Force and movement were recorded(21-27°C) from the fiber as a whole and, in certain experiments, from a short marked segment that was held at constant length by feedback control. The maximum tetanic force, 368±57 kN/m2 (N=10), was not significantly different from that recorded in frog muscle fibers at equal temperature. However, the rising phase of the tetanus was considerably slower in the mammalian fibers, 202±20 ms (N=17) being required to reach 90% of maximum tetanic force as compared with 59±4 ms(N=20) in the frog muscle fibers. Similar to the situation in frog muscle fibers, the force-velocity relation exhibited two distinct curvatures located on either side of a breakpoint near 80% of the isometric force. Maximum speed of shortening was 4.0±0.3 fiber lengths s-1(N=6). The relationship between tetanic force and sarcomere length was studied between 1.5 and 4.0 μm sarcomere spacings, based on length-clamp recordings that were free of `tension creep'. There was a flat maximum (plateau) of the length-tension relation between approximately 2.0 and 2.4 μm sarcomere lengths. The descending limb of the length-tension relation (linear regression) intersected the length axis (zero force) at 3.88μm and reached maximum force at 2.40 μm sarcomere length. The slope of the descending limb is compatible with a thick filament length of 1.63 μm and an average thin filament length of 1.10 μm. These values accord well with recent electron microscope measurements of myofilament length in mammalian muscle.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献