Tension sensitivity of the heart pacemaker neurons in the isopod crustaceanLigia pallasii

Author:

Sakurai Akira1,Wilkens Jerrel L.2

Affiliation:

1. Present address: Department of Biology, Georgia State University, Atlanta, GA 30303, USA

2. Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Abstract

SUMMARYIn the crustacean neurogenic heart, the cardiac ganglion (CG) acts as a peripherally located central pattern generator (CPG) by producing rhythmic motor output that initiates the heartbeat. In the isopod Ligia, the CG consists of six electrically coupled neurons that all function both as endogenous oscillators and as glutamatergic motoneurons innervating heart muscle. In the present study, we present several lines of evidence to suggest that the CG neurons are sensitive to passive stretch and active tension of the heart muscle. Stretching the heart wall caused a sustained decrease in the burst frequency of the CG neuron. Releasing from the stretch caused a rebound increase in burst frequency above the control rate. A brief stretch (200-300 ms duration) caused either phase advance or phase delay of the following CG bursts, depending on the timing at which the stretch was applied. Repeated brief stretches could entrain the CG bursts to either higher or lower frequencies than the free-run burst frequency. Intracellular recording from one of the CG neurons revealed that it exhibited hyperpolarization during the stretch. The stretch-induced hyperpolarization was followed by a burst discharge upon release from the stretch. With increased stretch amplitude, the amplitude of hyperpolarizing response increased and the timing of the following burst was advanced. When the myogenic activity of the heart muscle was pharmacologically isolated from the ganglionic drive by applying a glutamatergic antagonist, Joro spider toxin (JSTX), the spontaneous muscle contraction caused a hyperpolarizing deflection in the CG neuron. Under specific conditions made by JSTX and tetrodotoxin, the CG burst became entrained to the myogenic rhythm. These results suggest that the Ligia CG neurons have tension sensitivity in addition to their pacemaker and motoneuronal functions. Such multifunctional neurons may form a single neuron reflex arc inside the heart.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. Alexandrowicz, J. S. (1932). Innervation of the heart of Crustacea. I. Decapoda. Q. J. Microsc. Sci.75, 182-249.

2. Alexandrowicz, J. S. (1953). Innervation of the heart of Ligia oceanica. J. Mar. Biol. Assoc. UK31, 85-97.

3. Anderson, M. and Cooke, I. M. (1971). Neural activation of the heart of the lobster Homarus americanus. J. Exp. Biol.55, 449-468.

4. Avery, L. and Thomas, J. H. (1997). Feeding and Defecation. In C. elegans II (ed. D. L. Riddle, T. Blumenthal, B. J. Meyer and J. R. Press), pp. 679-716. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

5. Brown, H. (1964). Electrophysiological investigation of the heart of Squilla mantis. II. The heart muscle. J. Exp. Biol.41, 701-722.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3