Fatty acid oxidation: a neglected factor in understanding the adjustment of mitochondrial function to cold temperatures

Author:

Mast Heather1,Holody Claudia D.1,Lemieux Hélène1ORCID

Affiliation:

1. University of Alberta Faculty Saint-Jean, Women and Children Research Health Institute, Department of Medicine , , Edmonton, AB, Canada, T6G 2H7

Abstract

ABSTRACT For ectothermic species, adaptation to thermal changes is of critical importance. Mitochondrial oxidative phosphorylation (OXPHOS), which leverages multiple electron pathways to produce energy needed for survival, is among the crucial metabolic processes impacted by temperature. Our aim in this study was to identify how changes in temperature affect the less-studied electron transferring flavoprotein pathway, fed by fatty acid substrates. We used the planarian Dugesia tigrina, acclimated for 4 weeks at 10°C (cold acclimated) or 20°C (normothermic). Respirometry experiments were conducted at an assay temperature of either 10 or 20°C to study specific states of the OXPHOS process using the fatty acid substrates palmitoylcarnitine (long chain), octanoylcarnitine (medium chain) or acetylcarnitine (short chain). Following cold acclimation, octanoylcarnitine exhibited increases in both the OXPHOS and electron transfer (ET, non-coupled) states, indicating that the pathway involved in medium-chain length fatty acids adjusts to cold temperatures. Acetylcarnitine only showed an increase in the OXPHOS state as a result of cold acclimation, but not in the ET state, indicative of a change in phosphorylation system capacity rather than fatty acid β-oxidation. Palmitoylcarnitine oxidation was unaffected. Our results show that cold acclimation in D. tigrina caused a specific adjustment in the capacity to metabolize medium-chain fatty acids rather than an adjustment in the activity of the enzymes carnitine-acylcarnitine translocase, carnitine acyltransferase and carnitine palmitoyltransferase-2. Here, we provide novel evidence of the alterations in fatty acid β-oxidation during cold acclimation in D. tigrina.

Funder

Natural Sciences and Engineering Research Council of Canada

Campus Saint-Jean

Canadian Foundation for Innovation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3