Affiliation:
1. Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
2. Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
Abstract
SUMMARYGoldfish acclimated to cold water (e.g. 7°C) experience a marked reduction in functional lamellar surface area owing to the proliferation of an interlamellar cell mass (ILCM), a phenomenon termed gill remodelling. The goal of the present study was to assess the consequences of the reduced functional surface area on the capacity of goldfish to excrete ammonia. Despite the expected impact of ambient temperature on functional surface area, fish acclimated to 7°C and 25°C exhibited similar rates of ammonia excretion (Jnet,amm); the Q10 values for fed and starved fish were 1.07 and 1.20, respectively. To control for possible temperature-related differences in rates of endogenous ammonia production, Jnet,amm was determined at the two acclimation temperatures after loading fish with 1.12 μmol g–1 of NH4Cl. In the 3 h post-injection period, Jnet,amm was elevated to a greater extent in the 25°C fish. To estimate the potential contribution of increased ventilation and cardiac output to ammonia clearance in the warmer fish, the ammonia loading experiment was repeated on the 7°C fish immediately after they were exercised to exhaustion. The rate of excretion of ammonia was significantly increased in the exercised 7°C fish (presumably experiencing increased ventilation and cardiac output for at least some of the measurement period) suggesting that differences in external and internal convection may at least partially explain the enhanced capacity of the 25°C fish to clear the ammonia load. To more specifically assess the contribution of the different functional surface areas on the differing rates of ammonia clearance at the two acclimation temperatures, the 7°C fish were exposed for 7 days to hypoxia (PO2=10 mmHg=1.33 kPa), a treatment known to cause the disappearance of the ILCM. The results demonstrated that the hypoxia-associated loss of the ILCM was accompanied by a significant increase in the rate of ammonia clearance in the 7°C fish when returned to normoxic conditions. To determine whether compensatory changes in the ammonia transporting proteins might be contributing to sustaining Jnet,amm under conditions of reduced functional lamellar surface area, the relative expression and branchial distribution of four Rh proteins were assessed by western blotting and immunocytochemistry. Although the relative expression of the Rh proteins was unaffected by acclimation temperature, there did appear to be a change in the spatial distribution of Rhag, Rhbg and Rhcg1. Specifically, these three Rh proteins (and to a lesser extent Rhcg2) appeared to localize in cells on the outer edge of the ILCM that were enriched with Na+/K+-ATPase. Thus, we suggest that despite the impediment to ammonia excretion imposed by the ILCM, goldfish acclimated to 7°C are able to sustain normal rates of excretion owing to the redistribution of ammonia transporting cells.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献