Increased gap junction assembly between cultured cells upon cholesterol supplementation

Author:

Meyer R.1,Malewicz B.1,Baumann W.J.1,Johnson R.G.1

Affiliation:

1. Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108.

Abstract

Novikoff hepatoma cells provide an excellent model system for the study of gap junction assembly, a process that could be influenced by lipids and other factors at numerous points. Since it is possible to alter the cellular levels of cholesterol in these cells, it was added to the cells in serum-supplemented medium and changes in gap junction assembly were evaluated. Cells were dissociated and reaggregated following exposure to a range of cholesterol concentrations for 24 h. A five- to sixfold increase in the number of aggregated gap junction particles and a 50% increase in cellular cholesterol content were observed with 20 microM added cholesterol. A 1-h exposure to added cholesterol, during cell reaggregation, resulted in a fourfold increase in the number of aggregated gap junction particles, demonstrating that the effect was rapid. The number of aggregated gap junction particles and formation plaque areas were used as measures of junction assembly and assayed by quantitative freeze-fracture and electron microscopy. Junctional permeabilities were evaluated by means of dye transfer times following the intracellular microinjection of Lucifer Yellow. Increased dye transfer was observed between cholesterol-treated cells, which suggested that the increase in assembly was accompanied by an increase in junction permeability. Cells were treated with cycloheximide (100 micrograms ml-1) and actinomycin D (10 micrograms ml-1) to determine whether protein and RNA syntheses were involved in the enhanced gap junction assembly. Cycloheximide but not actinomycin D blocked the increased junction assembly observed with added cholesterol. These results suggested that protein synthesis, but not RNA synthesis, is necessary for the increased gap junction formation observed.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3