Size heterogeneity, phosphorylation and transmembrane organisation of desmosomal glycoproteins 2 and 3 (desmocollins) in MDCK cells

Author:

Parrish E.P.1,Marston J.E.1,Mattey D.L.1,Measures H.R.1,Venning R.1,Garrod D.R.1

Affiliation:

1. Cancer Research Campaign Medical Oncology Unit, University of Southampton, UK.

Abstract

Metabolic labelling with [35S]methionine and immunoprecipitation with specific antibodies to bovine desmosomal glycoproteins 2 and 3 (dg2 and dg3: desmocollins) reveals a triplet of polypeptides of Mr 115,000, 107,000 and 104,000 in MDCK cells. Tunicamycin treatment shows that this heterogeneity does not arise through differential N-linked glycosylation. Under conditions in which cells are actively forming desmosomes, the largest polypeptide, dg2, becomes phosphorylated on serine, but the two smaller polypeptides, dg3a and 3b, do not. Controlled trypsinisation of intact cells yields three membrane-protected fragments (Mr 28,000, 24,000 and 23,000) derived from these glycoproteins. The largest of these fragments is phosphorylated but the two smaller fragments are not. A monoclonal antibody to bovine dg2 and dg3 stains MDCK cells cytoplasmically. In immunoblotting of MDCK cells the monoclonal antibody recognises dg2 strongly and shows a weaker reaction with a band of lower Mr corresponding to dg3a. It also recognises the immunoprecipitated 28,000 Mr fragment from trypsinised cells and a smaller fragment of 24,000 Mr. The simplest interpretation of these data is that all three glycoproteins have a transmembrane configuration with a single membrane-spanning domain, and show heterogeneity of size and phosphorylation in their cytoplasmic domains. The data are discussed in relation to the known structures of some cell adhesion molecules. Questions about the relative roles and distributions of the different polypeptides in desmosomal organisation are raised.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3