Affiliation:
1. Institute of Cytology and Genetics, Russia;
2. Institute of Chemical Kinetics and Combustion, Russia
Abstract
Abstract
Juvenile hormone (JH) and dopamine are involved in the stress response in insects. The insulin/insulin-like growth factor signalling pathway has also recently been found to be involved in the regulation of various processes, including stress tolerance. However, the relationships among the JH, dopamine and insulin signalling pathways remain unclear. Here, we study the role of insulin signalling in the regulation of JH and dopamine metabolism under normal and heat stress conditions in Drosophila melanogaster females. We show that suppression of the insulin-like receptor (InR) in the corpus allatum, a specialised endocrine gland that synthesises JH, causes an increase in dopamine level and JH-hydrolysing activity and alters the activities of enzymes that produce as well as those that degrade dopamine (alkaline phosphatase (ALP), tyrosine hydroxylase (TH) and dopamine-dependent arylalkylamine N-acetyltransferase (DAT)). We also found that InR suppression in the corpus allatum modulates dopamine, ALP, TH and JH-hydrolysing activity in response to heat stress and that it decreases the fecundity of the flies. JH application restores dopamine metabolism and fecundity in females with decreased InR expression in the corpus allatum. Our data provide evidence that the insulin/insulin-like growth factor signalling pathway regulates dopamine metabolism in females of D. melanogaster via the system of JH metabolism and that it affects the development of the neuroendocrine stress reaction and interacts with JH in the control of reproduction in this species.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics