Affiliation:
1. Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan.
Abstract
We have studied the regulation of microtubule nucleating activity of the centrosome using cell-free extracts from Xenopus eggs. We found that the number of microtubules per centrosome increases dramatically with time during incubation of isolated centrosomes in interphasic egg extracts prepared 20–30 minutes after electric activation of cytostatic factor (CSF)-arrested eggs. The increase in microtubule nucleation was still conspicuous even when KCl-treated centrosomes (centrosomes stripped of their microtubule nucleating activity by 1 M KCl treatment) were incubated in interphasic extracts. Electron microscopy and immunostaining by anti-gamma-tubulin and 5051 human anti-centrosome antibodies revealed that pericentriolar material (PCM) was accumulated during the increase in microtubule nucleation from centrosomes in interphasic extracts, suggesting regulation of centrosomal activity by PCM accumulation. The ability of egg extracts to activate microtubule nucleation from centrosomes was also assumed to be regulated by phosphorylation, since addition of protein kinase inhibitors into interphasic extracts totally blocked the increase in microtubule nucleation from the KCl-treated centrosome. The ability of CSF-arrested mitotic extracts to increase microtubule nucleation from KCl-treated centrosomes was 3.5- to 5-fold higher than that of interphasic extracts, while PCM accumulation in mitotic extracts seemed to be similar to that in interphasic extracts. The increase in microtubule nucleation from KCl-treated centrosomes was strikingly enhanced by the addition of purified p34cdc2/cyclin B complex to interphasic extracts, but not by MAP kinase, which is activated downstream of p34cdc2/cyclin B. These results suggest two pathways activating centrosomal activity in egg extracts: accumulation of PCM and phosphorylation mediated by p34cdc2/cyclin B.
Publisher
The Company of Biologists
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献