Diverse mechanisms for cell attachment to platelet thrombospondin

Author:

Adams J.C.1,Lawler J.1

Affiliation:

1. Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.

Abstract

Thrombospondin-1 is a component of the extracellular matrix which is thought to play important roles in cell migration and proliferation, during embryogenesis and wound repair. To understand the basis for these activities, we are mapping the regions of the molecule with cell adhesive activity. Here, we use antagonists of specific cell binding sites, adhesion-perturbing thrombospondin monoclonal antibodies and proteolytic fragments of platelet thrombospondin, to investigate the adhesive mechanisms used by G361 melanoma cells, human intestinal smooth muscle cells (HISM), epidermal keratinocytes and MG-63 osteosarcoma cells. When attached to the same preparations of platelet thrombospondin, HISM and MG-63 cells underwent spreading, whereas G361 cells and keratinocytes did not. Attachment of all four cell types involved the carboxyterminal domain. The type 1 repeats and the amino-terminal heparin binding domain were important for stable attachment of G361, HISM and MG-63 cells, but were not involved in keratinocyte attachment. GRGDSP peptide caused near complete inhibition of HISM and MG-63 cell attachment, partially inhibited G361 attachment, but did not inhibit keratinocyte attachment. Attachment of HISM and MG-63 cells involved the alpha v beta 3 integrin. The integrity of the thrombospondin molecule was important for its adhesivity towards G361, HISM, and MG-63 cells, whereas keratinocytes attached to the 140 kDa tryptic fragment as effectively as they did to the intact molecule. These results show that cell attachment to platelet thrombospondin typically involves multiple binding interactions, but the exact profile of interactions is cell type specific. Usage of particular cell-binding sites does not predict whether cells will undergo spreading or not. These data may, in part, explain some of the current controversies surrounding the mechanisms of cell attachment to thrombospondin.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3