An N-terminal truncation of the ncd motor protein supports diffusional movement of microtubules in motility assays

Author:

Chandra R.1,Endow S.A.1,Salmon E.D.1

Affiliation:

1. Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

The nonclaret disjunctional (ncd) protein is a kinesin-related microtubule motor protein that is encoded at the claret locus in Drosophila and is required for proper chromosome distribution in meiosis and early mitosis. The protein contains a region with 41% amino acid sequence identity to kinesin heavy chain, but translocates on microtubules with the opposite polarity to kinesin, toward microtubule minus ends. The overall structure of ncd also differs from kinesin heavy chain, in that the proposed motor domain is present at the C terminus of the molecule instead of the N terminus, as in kinesin heavy chain. In studies to define the molecular determinants of ncd function, we constructed and expressed a protein with a deletion of the N-terminal 208 amino acids of the non-motor region. Analysis of the truncated protein shows that the protein exhibits microtubule-stimulated Mg(2+)-ATPase activity and binds microtubules in pelleting assays. In contrast to near full-length ncd, the truncated protein does not support directional movement of microtubules in in vitro motility assays. Instead, microtubules show nucleotide-sensitive binding to the truncated protein on glass surfaces and bound microtubules exhibit one-dimensional diffusional movement that is constrained to their longitudinal axis. The diffusional movement reveals a weak binding state of the ncd motor that may represent a mechanochemical intermediate in its ATP hydrolysis cycle. If diffusional movement is a characteristic intrinsic to the claret motor, it is likely to be important in the in vivo function of the protein.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3