NKX6 transcription factor activity is required for α- andβ-cell development in the pancreas

Author:

Henseleit Korinna D.12,Nelson Shelley B.1,Kuhlbrodt Kirsten2,Hennings J. Christopher1,Ericson Johan3,Sander Maike1

Affiliation:

1. Department of Developmental and Cell Biology, University of California at Irvine, 4203 McGaugh Hall, Irvine, CA 92697-2300, USA

2. Center for Molecular Neurobiology, Martinistrasse 85, 20251 Hamburg,Germany

3. Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, S-171 77 Stockholm, Sweden

Abstract

In diabetic individuals, the imbalance in glucose homeostasis is caused by loss or dysfunction of insulin-secreting β-cells of the pancreatic islets. As successful generation of insulin-producing cells in vitro could constitute a cure for diabetes, recent studies have explored the molecular program that underlies β-cell formation. From these studies, the homeodomain transcription factor NKX6.1 has proven to be a key player. In Nkx6.1 mutants, β-cell numbers are selectively reduced, while other islet cell types develop normally. However, the molecular events downstream of NKX6.1, as well as the molecular pathways that ensure residualβ-cell formation in the absence of NKX6.1 are largely unknown. Here, we show that the Nkx6.1 paralog, Nkx6.2, is expressed during pancreas development and partially compensates for NKX6.1 function. Surprisingly, our analysis of Nkx6 compound mutant mice revealed a previously unrecognized requirement for NKX6 activity in α-cell formation. This finding suggests a more general role for NKX6 factors in endocrine cell differentiation than formerly suggested. Similar to NKX6 factors, the transcription factor MYT1 has recently been shown to regulateα- as well as β-cell development. We demonstrate that expression of Myt1 depends on overall Nkx6 gene dose, and therefore identify Myt1 as a possible downstream target of Nkx6 genes in the endocrine differentiation pathway.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3