Wnt5a is a cell-extrinsic factor that supports self-renewal of mouse spermatogonial stem cells

Author:

Yeh Jonathan R.1,Zhang Xiangfan1,Nagano Makoto C.1

Affiliation:

1. Department of Obstetrics and Gynecology and Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A1, Canada

Abstract

The maintenance of spermatogonial stem cells (SSCs) provides the foundation for life-long spermatogenesis. Although glial-cell-line-derived neurotrophic factor and fibroblast growth factor 2 are crucial for self-renewal of SSCs, recent studies have suggested that other growth factors have important roles in controlling SSC fate. Because β-catenin-dependent Wnt signaling promotes self-renewal of various stem cell types, we hypothesized that this pathway contributes to SSC maintenance. Using transgenic reporter mice for β-catenin-dependent signaling, we found that this signaling was not active in SSCs in vitro and in most spermatogonia in vivo. Nonetheless, a pan-Wnt antagonist significantly reduced SSC activity in vitro, suggesting that some Wnt molecules exist in our serum-free culture system and contribute to SSC maintenance. Here, we report that Wnt5a promotes SSC activity. We found that Wnt5a-expressing fibroblasts supported SSC activity better than those not expressing Wnt5a in culture, and that recombinant Wnt5a stimulated SSC maintenance. Furthermore, Wnt5a promoted SSC survival in the absence of feeder cells, and this effect was abolished by inhibiting the Jun N-terminal kinase cascade. In addition, Wnt5a blocked β-catenin-dependent signaling. We detected the expression of Wnt5a and potential Wnt5a receptors in Sertoli cells and stem/progenitor spermatogonia, respectively. These results indicate that Wnt5a is a cell-extrinsic factor that supports SSC self-renewal through β-catenin-independent mechanisms.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3