Neural Control of Fibrillar Muscles in Bees During Shivering and Flight

Author:

ESCH HARALD1,GOLLER FRANZ1

Affiliation:

1. Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA

Abstract

The big indirect flight muscles in the thorax of honeybees and bumblebees show two modes of action: they contract with ‘conventional’ twitches in response to slowly repeated muscle potentials and go into tetanus at higher muscle potential frequencies. They can also contract much faster when quickly stretched (stretch activation). We observed contractions of DV (dorsoventral) and DL (dorsal longitudinal) muscles optically with the help of a tiny mirror glued to the scutellum. We noticed that DL muscles contracted much more than DV muscles during pre-flight warmup. During warm-up, muscle potential frequencies in DL muscles were higher than in DV muscles (DL frequency/DV frequency =1.3), whereas during flight the ratio reversed (DL/DV=0.8). The scutal fissure was completely closed during shivering warm-up, apparently because the DL muscles shortened as much as they could. As a consequence, fast antagonistic stretching was not possible. However, the scutal fissure oscillated between wide open and closed during flight, and antagonists could stretch each other quickly. Flight was started by highly synchronized ‘conventional’ contractions of many muscle elements in DV muscles. Antagonistic stretch-activation during flight led to faster shortening than during shivering warm-up and synchronized all activated muscle elements to produce maximal contractions. The indirect flight muscles of bumblebees were in tetanic contractions during shivering warm-up over the whole range of temperatures between 8 and 36°C. These tetanic contractions probably prevented other researchers from observing mechanical muscle activity. Our results, which for the first time allow us to detect tetanic contractions directly, make it very improbable that non-shivering thermogenesis occurs in bumblebees, as has been proposed previously.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3