Biomechanics of Flight in Neotropical Butterflies: Aerodynamics and Mechanical Power Requirements

Author:

DUDLEY ROBERT1

Affiliation:

1. Smithsonian Tropical Research Institute, PO Box 2072, Balboa, Republic of Panama

Abstract

A quasi-steady aerodynamic analysis of forward flight was performed on 15 species of neotropical butterflies for which kinematic and morphological data were available. Mean lift coefficients required for flight typically exceeded maximum values obtained on insect wings under conditions of steady flow, thereby implicating unsteady aerodynamic mechanisms even during fast forward flight of some butterflies. The downstroke produced vertical forces on average 18% in excess of those necessary to support the body weight through the wingbeat, while the upstroke contributed minimal or negative vertical force. Estimated effective angles of incidence (αT of the wings averaged 39° during the downstroke and −22° during the upstroke; spanwise variation in αT was greater than the average difference between half-strokes. Total mechanical power requirements of forward flight averaged 12.5 W kg−1, for the case of perfect elastic storage of whig inertial energy, and 20.2 W kg−1, assuming zero elastic energy storage. Energetic costs of the erratic trajectories during forward flight increased mechanical power requirements by an average of 43%, assuming perfect elastic storage. Fluctuations in horizontal kinetic energy of the center of mass were principally responsible for this dramatic increase. When comparing different species, total mechanical power increased linearly with forward airspeed (assuming perfect elastic energy storage of inertial energy) and scaled with mass0.26 If no elastic energy storage was assumed, mechanical power was independent of airspeed and was proportional to mass0.36. Estimated metabolic rates during flight averaged 22 and 36 ml O2 g−1 h−1, for the cases of perfect and zero elastic storage, respectively. Note: Mailing address: Smithsonian Tropical Research Institute, APO Miami, FL 34002, USA.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3