Restoration of pole-cell-forming ability to u.v.-irradiated Drosophila embryos by injection of mitochondrial lrRNA

Author:

Kobayashi S.1,Okada M.1

Affiliation:

1. Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan.

Abstract

Screening a cDNA library generated from poly(A) +RNA of Drosophila cleavage embryos, we selected a cDNA clone (pDE20.6). The cDNA hybridized specifically with a poly(A) +RNA that is capable of restoring embryos from u.v.-caused inability of pole cell formation. The RNA hybrid-selected by pDE20.6 was also able to induce pole cells in the anterior region of embryos, if it was coinjected with u.v.-irradiated polar plasm, although the RNA or irradiated polar plasm alone was not effective. Pole cells thus formed in the anterior or in the u.v.-irradiated posterior region were identified by polar granules and nuclear bodies, morphological markers for normal pole cells. Furthermore, the RNA-induced pole cells were able to migrate into gonadal rudiments. The nucleotide sequence of pDE20.6 cDNA insert was highly homologous with the mitochondrial large rRNA (lrRNA) gene, but not with any nuclear DNA sequences. Using pDE20.6 as a primer, a full-length cDNA of mitochondrial lrRNA was generated and cloned. The RNA transcribed in vitro from the cDNA was able to restore pole cell formation. The cDNA hybridized only with a 1.5 kb poly(A) +RNA on a Northern blot. The 1.5 kb RNA sedimented more with the post-mitochondrial (P3) fraction than with the mitochondrial (P2) fraction, while the majority of transcripts from another mitochondrial gene was detected in the P2 fraction.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3