The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo

Author:

Messenger N.J.1,Warner A.E.1

Affiliation:

1. Department of Anatomy and Developmental Biology, University College London, UK.

Abstract

Cell-type-specific antibodies have been used to follow the appearance of neurones and glia in the developing nervous system of the amphibian embryo. Differentiated neurones were recognized with antibodies against neurofilament protein while glial cells were identified with antibodies against glial fibrillary acidic protein (GFAP). The appearance of neurones containing the neurotransmitters 5-hydroxytryptamine and dopamine has been charted also. In Xenopus, neurofilament protein in developing neurones was observed occasionally at NF stage 21 and was present reliably in the neural tube and in caudal regions of the brain at stage 23. Antibodies to the low molecular weight fragment of the neurofilament triplet recognized early neurones most reliably. Radial glial cells, identified with GFAP antibody, were identified from stage 23 onwards in the neural tube and caudal regions of the brain. In the developing spinal cord, GFAP staining was apparent throughout the cytoplasm of each radial glial cell. In the brain, the peripheral region only of each glial cell contained GFAP. By stage 36, immunohistochemically recognizable neurones and glia were present throughout the nervous system. In the axolotl, by stage 36 the pattern of neural and glial staining was identical to that observed in Xenopus. GFAP staining of glial cells was obvious at stage 23, although neuronal staining was clearly absent. This implies that glial cells differentiate before neurones. 5-HT-containing cell bodies were first observed in caudal regions of the developing brain on either side of the midline at stage 26. An extensive network of 5-HT neurones appeared gradually, with a substantial subset crossing to the opposite side of the brain through the developing optic chiasma. 5,7-dihydroxytryptamine prevented the appearance of 5-HT. Depletion of 5-HT had little effect on development or swimming behaviour. Dopamine-containing neurones in the brain first differentiated at stage 35–36 and gradually increased in number up to stage 45–47, the latest stage examined. The functional role of 5-HT- or dopamine-containing neurones remains to be elucidated. We conclude that cell-type-specific antibodies can be used to identify neurones and glial cells at early times during neural development and may be useful tools in circumstances where functional identification is difficult.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3