Long-axis rotation: a missing degree of freedom in avian bipedal locomotion

Author:

Kambic Robert E.1,Roberts Thomas J.1,Gatesy Stephen M.1

Affiliation:

1. Brown University, United States

Abstract

Abstract Ground-dwelling birds are typically characterized as erect bipeds having hind limbs that operate parasagittally. Consequently, most previous research has emphasized flexion/extension angles and moments as calculated from a lateral perspective. Three-dimensional motion analyses have documented non-planar limb movements, but the skeletal kinematics underlying changes in foot orientation and transverse position remain unclear. In particular, long-axis rotation of the proximal limb segments is extremely difficult to measure with topical markers. Here we present six degree of freedom skeletal kinematic data from maneuvering guineafowl acquired by marker-based XROMM (X-ray Reconstruction of Moving Morphology). Translations and rotations of the hips, knees, ankles, and pelvis were derived from animated bone models using explicit joint coordinate systems. We distinguished sidesteps, sidestep yaws, crossover yaws, sidestep turns, and crossover turns, but birds often performed a sequence of blended partial maneuvers. Long-axis rotation of the femur (up to 38°) modulated the foot's transverse position. Long-axis rotation of the tibiotarsus (up to 65°) also affected medio-lateral positioning, but primarily served to either reorient a swing phase foot or yaw the body about a stance phase foot. Tarsometatarsal long-axis rotation was minimal, as was hip, knee, and ankle abduction/adduction. Despite having superficially hinge-like joints, birds coordinate substantial long-axis rotations of the hips and knees to execute complex 3-D maneuvers while striking a diversity of non-planar poses.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference73 articles.

1. Kinematic parameters of terrestrial locomotion in cursorial (ratites), swimming (ducks), and striding birds (quail and guinea fowl);Abourachid;J. Comp. Physiol. A,2001

2. Bipedal locomotion in ratites (Paleognatiform) examples of cursorial birds;Abourachid;Ibis,2000

3. Bird terrestrial locomotion as revealed by 3D kinematics;Abourachid;Zoology,2011

4. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs;Allen;Nature,2013

5. Grounded running in quails: simulations indicate benefits of observed fixed aperture angle between legs before touch-down;Andrada;J. Theor. Biol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3