Photoreceptor degeneration in microphthalmia (Mitf) mice: partial rescue by pigment epithelium-derived factor

Author:

Chen Yu1,Yang Juan1,Geng Huiqin1,Li Liping1,Li Jinyang1,Cheng Bing1,Ma Xiaoyin1,Li Huirong1,Hou Ling1ORCID

Affiliation:

1. Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, State Key Laboratory of Optometry, Ophthalmology, and Vision Science and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou Medical University, Wenzhou 325003, China

Abstract

ABSTRACT Dysfunction and loss of the retinal pigment epithelium (RPE) are hallmarks of retinal degeneration, but the underlying pathogenetic processes are only partially understood. Using mice with a null mutation in the transcription factor gene Mitf, in which RPE deficiencies are associated with retinal degeneration, we evaluated the role of trophic factors secreted by the RPE in retinal homeostasis. In such mice, the thickness of the outer nuclear layer (ONL) is as in wild type up to postnatal day 10, but then is progressively reduced, associated with a marked increase in the number of apoptotic cells and a decline in staining for rhodopsin. We show that retinal degeneration and decrease in rhodopsin staining can be prevented partially in three different ways: first, by recombining mutant-derived postnatal retina with postnatal wild-type RPE in tissue explant cultures; second, by adding to cultured mutant retina the trophic factor pigment epithelium-derived factor (PEDF; also known as SERPINF1), which is normally produced in RPE under the control of Mitf; and third, by treating the eyes of Mitf mutant mice in vivo with drops containing a bioactive PEDF 17-mer peptide. This latter treatment also led to marked increases in a number of rod and cone genes. The results indicate that RPE-derived trophic factors, in particular PEDF, are instrumental in retinal homeostasis, and suggest that PEDF or its bioactive fragments may have therapeutic potential in RPE deficiency-associated retinal degeneration.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Wenzhou Municipal Science and Technology Bureau

Wenzhou Medical University

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

Reference61 articles.

1. Photoreceptor rescue of pigment epithelium-derived factor-impregnated nanoparticles in Royal College of Surgeons rats;Akiyama;Mol. Vis.,2012

2. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome);Amiel;Clin. Dysmorphol.,1998

3. The discovery of the microphthalmia locus and its gene, Mitf;Arnheiter;Pigment Cell Melanoma Res.,2010

4. Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential;Barnstable;Prog. Retin Eye Res.,2004

5. Live imaging of developing mouse retinal slices;Barrasso;Neural Dev.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3