Beta-adrenergic control of plasma glucose and free fatty acid levels in the air-breathing African catfishClarias gariepinusBurchell 1822

Author:

van Heeswijk Johannes C. F.1,Vianen Gerjanne J.1,van den Thillart Guido E. E. J. M.1,Zaagsma Johan2

Affiliation:

1. Institute of Biology Leiden, Leiden University, PO Box 9516, 2300 RA,Leiden, the Netherlands

2. Department of Molecular Pharmacology, University Centre for Pharmacy,University of Groningen, 9713 AV, Groningen, the Netherlands

Abstract

SUMMARYIn several water-breathing fish species, β-adrenergic receptor stimulation by noradrenaline leads to a decrease in plasma free fatty acid(FFA) levels, as opposed to an increase in air-breathing mammals. We hypothesised that this change in adrenergic control is related to the mode of breathing. Therefore, cannulated air-breathing African catfish were infused for 90 min with noradrenaline or with the nonselective β-agonist,isoprenaline. To identify the receptor type involved, a bolus of either a selective β1-antagonist (atenolol) or a selectiveβ 2-antagonist (ICI 118,551) was injected 15 min prior to the isoprenaline infusion. Both noradrenaline and isoprenaline led to an expected rise in glucose concentration. Isoprenaline combined with both theβ 1- and β2-antagonist led to higher glucose concentrations than isoprenaline alone. This could indicate the presence of a stimulatory β-adrenoceptor different from β1 andβ 2-adrenoceptors; these two receptors thus seemed to mediate a reduction in plasma glucose concentration. Both noradrenaline and isoprenaline led to a significant decrease in FFA concentration. Whereas theβ 1-antagonist had no effect, the β2-antagonist reduced the decrease in FFA concentration, indicating the involvement ofβ 2-adrenoceptors. It is concluded that the air-breathing African catfish reflects water-breathing fish in the adrenergic control of plasma FFA and glucose levels.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3