Hearing in Notodontid Moths: a Tympanic Organ with a Single Auditory Neurone

Author:

SURLYKKE ANNEMARIE1

Affiliation:

1. Institute of Biology, Odense University, DK-5230 Odense M, Denmark

Abstract

1. Notodontid moths possess paired tympanic organs basically similar to the ears in other noctuoid families, but with a single auditory A cell. The A cell and the non-auditory B cell were studied anatomically by infusion of C0CI2 and physiologically by recordings from the tympanic nerve. 2. The response of the A cell is determined by intensity parameters and temporal parameters of an ultrasonic stimulus. The notodontid ear is as sensitive as the ears of sympatric noctuids. The directional sensitivity is approximately the same as in noctuids of comparable size (maximal interaural intensity difference of 10–15 dB). The dynamic range of the A cell is about 20–25 dB. Sound levels exceeding the threshold by 30–40 dB will saturate the A cells in both ears. Stimuli with different pulse lengths (from 5 to 200 ms, corresponding to pulse repetition rates (PRR) from 100-2.5 Hz), but equal duty cycles (50%) gave a maximum response for pulse lengths lying between 30 and 50 ms. The receptor cell followed the sound pulses in a one-to-one manner even at a PRR of 200 Hz. 3. Notodontid moths seem to show the same ‘bimodal’ evasive behaviour as noctuids. This behaviour can be explained on the basis of intensity parameters, since only low intensity stimuli will give the notodontid directional information. Hence, directional evasive behaviour is expected at low sound pressure levels (SPL), while high SPL (saturating both A cells) should elicit a non-directional evasive behaviour. However, the evasive behaviour could also be explained in terms of time parameters. Hunting bats increase the PRR of their cries when closing in on a prey and the moths may be able to use these time cues for changing their behaviour.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3