Expression of calsequestrin in atrial and ventricular muscle of thermally acclimated rainbow trout

Author:

Korajoki Hanna1,Vornanen Matti1

Affiliation:

1. University of Joensuu, Faculty of Biosciences, Joensuu, Finland

Abstract

SUMMARY Calsequestrin (CASQ) is the main Ca2+ binding protein within the sarcoplasmic reticulum (SR) of the vertebrate heart. The contribution of SR Ca2+ stores to contractile activation is larger in atrial than ventricular muscle, and in ectothermic fish hearts acclimation to low temperatures increases the use of SR Ca2+ in excitation–contraction coupling. The hypotheses that chamber-specific and temperature-induced differences in SR function are due to the increased SR CASQ content were tested in rainbow trout (Oncorhynchus mykiss)acclimated at either 4°C (cold acclimation, CA) or 18°C (warm acclimation, WA). To this end, the trout cardiac CASQ (omCASQ2) was cloned and sequenced. The omCASQ2 consists of 1275 nucleotides encoding a predicted protein of 425 amino acids (54 kDa in molecular mass, MM)with a high (75–87%) sequence similarity to other vertebrate cardiac CASQs. The transcript levels of the omCASQ2 were 1.5–2 times higher in CA than WA fish and about 2.5 times higher in the atrium than ventricle (P<0.001). The omCASQ2 protein was measured from western blots using a polyclonal antibody against the amino acid sequence 174–315 of the omCASQ2. Unlike the omCASQ2 transcripts, no differences were found in the abundance of the omCASQ2 protein between CA and WA fish, nor between the atrium and ventricle (P>0.05). However, a prominent qualitative difference appeared between the acclimation groups: two CASQ isoforms with apparent MMs of 54 and 59 kDa, respectively, were present in atrial and ventricular muscle of the WA trout whereas only the 54 kDa protein was clearly expressed in the CA heart. The 59 kDA isoform was a minor CASQ component representing 22% and 13% of the total CASQ proteins in the atrium and ventricle of the WA fish, respectively. In CA hearts, the 59 kDa protein was present in trace amounts (1.5–2.4%). Collectively, these findings indicate that temperature-related and chamber-specific differences in trout cardiac SR function are not related to the abundance of luminal Ca2+ buffering by cardiac CASQ.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3