Author:
von Thun Anne,Birtwistle Marc,Kalna Gabriela,Grindlay Joan,Strachan David,Kolch Walter,von Kriegsheim Alexander,Norman Jim C.
Abstract
Upregulation of the extracellular signal-regulated kinase (ERK) pathway has been shown to contribute to tumour invasion and progression. Since the two predominant ERK isoforms (ERK1 and ERK2) are highly homologous and have indistinguishable kinase activities in vitro, both enzymes were believed to be redundant and interchangeable. To challenge this view, here we show that ERK2 silencing inhibits invasive migration of MDA-MB-231 cells, and re-expression of ERK2 but not ERK1 restores the normal invasive phenotype. A detailed quantitative analysis of cell movement on 3D matrices indicates that ERK2 knockdown impairs cellular motility by decreasing the migration velocity as well as increasing the time that cells spend not moving. We used gene expression arrays to identify rab17 and liprin-β2 as genes whose expression was increased by knockdown of ERK2 and restored to normal levels following re-expression of ERK2, but not ERK1. Both Rab17 and Liprin-β2 play inhibitory roles in the invasive behaviour of three independent cancer cell lines. Importantly, knockdown of either Rab17 or Liprin-β2 restores invasiveness of ERK2-depleted cells, indicating that ERK2 drives invasion of MDA-MB-231 cells by suppressing expression of these genes.
Publisher
The Company of Biologists
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献