TGF-α ligands can substitute for the neuregulin Vein in Drosophila development

Author:

Austin Christina L.1,Manivannan Sathiya N.1,Simcox Amanda1

Affiliation:

1. Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA

Abstract

ErbB receptors, including the epidermal growth factor receptor (Egfr), are activated by EGF ligands to govern cell proliferation, survival, migration and differentiation. The different EGF-induced cell responses in development are regulated by deployment of multiple ligands. These inputs, however, engage only a limited number of intracellular pathways and are thought to elicit specific responses by regulating the amplitude or duration of the intracellular signal. The single Drosophila Egfr has four ligands: three of the TGF-α-type and a single neuregulin-like called vein (vn). Here, we used mutant combinations and gene replacement to determine the constraints of ligand specificity in development. Mutant analysis revealed extensive ligand redundancy in embryogenesis and wing development. Surprisingly, we found that the essential role of vn in development could be largely replaced by expression of any TGF-α ligand, including spitz (spi), in the endogenous vn pattern. vn mutants die as white undifferentiated pupae, but the rescued individuals showed global differentiation of adult body parts. Spi is more potent than Vn, and the best morphological rescue occurred when Spi expression was reduced to achieve an intracellular signaling level comparable to that produced by Vn. Our results show that the developmental repertoire of a strong ligand like Spi is flexible and at the appropriate level can emulate the activity of a weak ligand like Vn. These findings align with a model whereby cells respond similarly to an equivalent quantitative level of an intracellular signal generated by two distinct ligands regardless of ligand identity.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3