Naïve bats discriminate arctiid moth warning sounds but generalize their aposematic meaning

Author:

Barber Jesse R.1,Chadwell Brad A.1,Garrett Nick1,Schmidt-French Barbara2,Conner William E.1

Affiliation:

1. Department of Biology, Wake Forest University, Winston-Salem, NC 27109,USA

2. Bat Conservation International, Austin, TX 78746, USA

Abstract

SUMMARY Naïve red (Lasiurus borealis Müller) and big brown(Eptesicus fuscus Beauvois) bats quickly learn to avoid noxious sound-producing tiger moths. After this experience with a model tiger moth,bats generalize the meaning of these prey-generated sounds to a second tiger moth species producing a different call. Here we describe the three-dimensional kinematic and bioacoustic details of this behaviour, first,as naïve bats learn to deal with an unpalatable model tiger moth and subsequently, as they avoid acoustic mimics. The tiger moths' first clicks influenced the bats' echolocation behaviour and the percentage of interactions that included terminal buzzes was associated with capture and investigatory behaviour. When the mimic was introduced, the bats decreased both their minimum distance to the tiger moth and the time at which they broke off their attack compared with their exposure to the model on the night before. These kinematic signatures closely match the bats' behaviour on their first night of experience with the model. Minimum distances and time of pursuit cessation increased again by the last night of the mimic's presentation. These kinematic and bioacoustic results show that although naïve bats generalize the meaning of aposematic tiger moth calls, they discriminate the prey-generated signals as different and investigate. Extrapolating to experienced bats, these results suggest that acoustic predators probably exert potent and fine-scaled selective forces on acoustic mimicry complexes.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3