Affiliation:
1. School of Biological Sciences, University of Wales Bangor, Gwynedd LL57 2UW, UK. n.m.whiteley@bangor.ac.uk
Abstract
Extracellular acid-base balance in decapod crustaceans is influenced by water salinity, although the nature of this relationship is unclear. In euryhaline crabs, a decrease in salinity results in a metabolic alkalosis in the haemolymph and an increase in salinity results in a metabolic acidosis. Alterations in acid-base status by external changes in salinity are thought to be secondary to the adjustments required for ionic and osmotic regulation. In the present study, acid-base adjustments in the haemolymph of Eriocheir sinensis after transfer to 30 % sea water accompanied alterations in muscle pH and [HCO(3)(−)], as an initial acidosis coincided with an alkalosis in the leg muscle. By 48 h transfer, haemolymph pH increased as muscle pH and HCO(3)(−) declined. Haemolymph [Cl(−)] decreased significantly 3 h after transfer to a new steady state but haemolymph [Na(+)] and muscle [Na(+)] and [Cl(−)] remained unchanged. Muscle free amino acid concentration increased twofold 6 h after transfer, followed by a 2.5-fold increase in the haemolymph after 24 h. In contrast, 30 % sea water had no effect on haemolymph acid-base adjustments in the osmoconforming crab, Necora puber, which lacks ion and osmo-regulatory mechansims. Collectively these observations support the view that salinity-induced alterations in acid-base status are caused by adjustments consistent with cell volume regulation.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献