How external osmolarity affects the activity of the contractile vacuole complex, the cytosolic osmolarity and the water permeability of the plasma membrane in Paramecium multimicronucleatum

Author:

Stock C.1,Allen R.D.1,Naitoh Y.1

Affiliation:

1. Pacific Biomedical Research Center, Snyder Hall 306, University of Hawaii at Manoa, Honolulu, HI 96822, USA.

Abstract

The rate of fluid expulsion, R(CVC), from the contractile vacuole complex (CVC) of Paramecium multimicronucleatum was estimated from the volume of the contractile vacuoles (CVs) immediately before the start of fluid discharge and from the time elapsing between discharges. The R(CVC) increased when the cell was exposed to a strongly hypotonic solution and decreased in a weakly hypotonic solution. When the cell was exposed to an isotonic or a hypertonic solution, R(CVC) fell to zero. The time constant, tau, used to describe the change in R(CVC) in response to a change in external osmolarity shortened after a short-term exposure to a strongly hypotonic solution and lengthened after a short-term exposure to a less hypotonic solution. A remarkable lengthening of tau occurred after a short-term exposure to isotonic or hypertonic solution. Under natural conditions, mechanisms for controlling R(CVC) are effective in maintaining the cytosolic osmolarity hypertonic within a narrow concentration range despite changes in the external osmolarity, which is normally hypotonic to the cytosol. Cells exposed to an isotonic or hypertonic solution resumed CV activity when left in the solution for 12 h. The cytosolic osmolarity was found to increase and to remain hypertonic to the external solution. This will permit cells to continue to acquire water. The increase in the cytosolic osmolarity occurred in a stepwise fashion, rather than linearly, as the external osmolarity increased. That is, the cytosolic osmolarity first remained more-or-less constant at an increased level until the external osmolarity exceeded this level. Thereupon, the cytosolic osmolarity increased to a new higher level in 12 h, so that the cytosol again became hypertonic to the external solution and the cells resumed CV activity. These results imply that the cell needs to maintain water segregation activity even after it has been exposed to an isotonic or hypertonic environment. This supports the idea that the CVC might be involved not only in the elimination of excess cytosolic water but also in the excretion of some metabolic waste substances.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3