Glucagon-like peptide isolated from the eel intestine: effects on atrial beating

Author:

Uesaka Toshihiro12,Yano Keiichi3,Sugimoto Seiji3,Ando Masaaki1

Affiliation:

1. Laboratory of Integrative Physiology, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan,

2. Department of Environment and Mutation, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan

3. Tokyo Research Laboratories, Kyowa Hakko Kogyo Co. Ltd, 3-6-6 Asahimachi, Machidashi, Tokyo 194-0023, Japan and

Abstract

SUMMARYA new glucagon-like peptide was isolated from the intestine of the eel Anguilla japonica. The primary structure was determined by sequence analysis after cleavage with lysyl endopeptidase, quantitative amino acid analysis and fast atom bombardment mass spectrometry as HSQGTFTNDY10SKYLETRRAQ20DFVQWLMNSK30RSGGPT. Since its structure is similar to that of oxyntomodulins (OXMs) reported in various vertebrates, we named this peptide eel oxyntomodulin (eOXM). We found that eOXM enhanced the contractile force and the beating rate of the eel atrium in a dose-dependent manner. These effects of eOXM were not inhibited by betaxolol, a β1-adrenoceptor antagonist, indicating that the actions of eOXM were independent of those of adrenaline. eOXM enhanced the intracellular Ca2+ concentration of the myocardium. The contractility of the eel atrium was greatly reduced after omitting Ca2+ from the bathing medium or after treatment with verapamil, a Ca2+ channel blocker. After inhibiting Ca2+ entry under these conditions, the inotropic effect of eOXM was markedly reduced, but the chronotropic effect was not altered significantly. These results indicate that the inotropic effect of eOXM is via a stimulation of Ca2+ influx but that the chronotropic effect may be independent of extracellular Ca2+.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3