Arginine Vasotocin Modulates a Sexually Dimorphic Communication Behavior in the Weakly Electric fish APTERONOTUS LEPTORHYNCHUS

Author:

Bastian Joseph1,Schniederjan Stephanie1,Nguyenkim Jerry1

Affiliation:

1. Department of Zoology, 730 Van Vleet Oval, University of Oklahoma, Norman, OK 73019, USA

Abstract

SUMMARY South American weakly electric fish produce a variety of electric organ discharge (EOD) amplitude and frequency modulations including chirps or rapid increases in EOD frequency that function as agonistic and courtship and mating displays. In Apteronotus leptorhynchus, chirps are readily evoked by the presence of the EOD of a conspecific or a sinusoidal signal designed to mimic another EOD, and we found that the frequency difference between the discharge of a given animal and that of an EOD mimic is important in determining which of two categories of chirp an animal will produce. Type-I chirps (EOD frequency increases averaging 650Hz and lasting approximately 25ms) are preferentially produced by males in response to EOD mimics with a frequency of 50–200Hz higher or lower than that of their own. The EOD frequency of Apteronotus leptorhynchus is sexually dimorphic: female EODs range from 600 to 800Hz and male EODs range from 800 to 1000Hz. Hence, EOD frequency differences effective in evoking type-I chirps are most likely to occur during male/female interactions. This result supports previous observations that type-I chirps are emitted most often during courtship and mating. Type-II chirps, which consist of shorter-duration frequency increases of approximately 100Hz, occur preferentially in response to EOD mimics that differ from the EOD of the animal by 10–15Hz. Hence these are preferentially evoked when animals of the same sex interact and, as previously suggested, probably represent agonistic displays. Females typically produced only type-II chirps. We also investigated the effects of arginine vasotocin on chirping. This peptide is known to modulate communication and other types of behavior in many species, and we found that arginine vasotocin decreased the production of type-II chirps by males and also increased the production of type-I chirps in a subset of males. The chirping of most females was not significantly affected by arginine vasotocin.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3