The influence of locomotion on air-sac pressures in little penguins

Author:

Boggs D. F.1,Baudinette R. V.2,Frappell P. B.3,Butler P. J.4

Affiliation:

1. Department of Biology, Hall of Sciences 258, Eastern Washington University, Cheney, WA 99004, USA,

2. Department of Environmental Biology, University of Adelaide, Adelaide, South Australia 5005, Australia,

3. Department of Zoology, La Trobe University, Melbourne, Victoria 3083, Australia and

4. School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK

Abstract

SUMMARYAir-sac pressures have been reported to oscillate with wing beat in flying magpies and with foot paddling in diving ducks. We sought to determine the impact on air-sac pressure of wing beats during swimming and of the step cycle during walking in little penguins (Eudyptula minor). Fluctuations averaged 0.16±0.06 kPa in the interclavicular air sacs, but only 0.06±0.04 kPa in the posterior thoracic sac, generating a small differential pressure between sacs of 0.06±0.02 kPa (means ± s.e.m., N=4). These fluctuations occurred at approximately 3 Hz and corresponded to wing beats during swimming, indicated by electromyograms from the pectoralis and supracoracoideus muscles. There was no abdominal muscle activity associated with swimming or exhalation, but the abdominal muscles were active with the step cycle in walking penguins, and oscillations in posterior air-sac pressure (0.08±0.038 kPa) occurred with steps. We conclude that high-frequency oscillations in differential air-sac pressure enhance access to and utilization of the O2 stores in the air sacs during a dive.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Respiration;In a Class of Their Own;2023

2. Cardiovascular and Immune Systems;In a Class of Their Own;2023

3. Fish-Birds: The Inside Story;The Aquatic World of Penguins;2023

4. Cervical air sac oxygen profiles in diving emperor penguins: parabronchial ventilation and the respiratory oxygen store;Journal of Experimental Biology;2020-01-01

5. Biomechanics and control of vocalization in a non-songbird;Journal of The Royal Society Interface;2007-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3