Growth and metabolism of larval zebrafish: effects of swim training

Author:

Bagatto B.1,Pelster B.2,Burggren W. W.1

Affiliation:

1. Department of Biological Sciences, University of North Texas, Denton, Texas, 76203, USA and

2. Institut fur Zoologie und Limnoligie, University of Innsbruck, 6020 Innsbruck, Austria

Abstract

SUMMARY Larval zebrafish (Danio rerio) of three different age classes (‘yolk-sac’ larvae, 96 h; ‘swim-up’ larvae, 9 days old; and ‘free-swimming’ larvae, 21 days old) were trained for 2, 6 and 11 days, respectively, to swim at 0 body lengths per second (BL s–1), 2 BL s–1 and 5 BL s–1. Survival was significantly diminished in larvae trained at 5 BL s–1 compared to controls (0 BL s–1). Although training produced no significant differences in mass and length, the youngest larvae absorbed their yolk at a faster rate during training. Routine oxygen consumption (ṀO2r) and mass-specific routine oxygen consumption (ṀO2r,m) were not significantly affected by chronic training in the yolk-sac larvae and swim-up larvae. However, trained free-swimming larvae had a significantly higher ṀO2r (after 11 days of training) and ṀO2r,m (after 8 and 11 days of training) compared to control larvae. Trained free-swimming larvae consumed significantly less oxygen during swimming compared to control larvae, as measured by closed-system respirometry. Trained yolk-sac larvae exposed to increasing hypoxia levels were more effective O2 regulators. Additionally, training enhanced survival during exposure to extreme hypoxia in all age groups. Thus, physiological acclimation to chronic swimming occurs in the earliest stages of life in the zebrafish.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3