ACOUSTICS OF A SMALL AUSTRALIAN BURROWING CRICKET

Author:

BAILEY W. J.1,BENNET-CLARK H. C.23,FLETCHER N. H.4

Affiliation:

1. Department of Zoology, University of Western Australia, Nedlands, WA 6907,Australia

2. Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

3. Author for correspondence (e-mail: henry.bennet-clark@zoo.ox.ac.uk)

4. Department of Electronic Materials, Engineering Research School of Physical Sciences and Engineering, Australian National University, Canberra,ACT 0200, Australia

Abstract

SUMMARYFor most insects, size determines the call frequency. This paper describes the acoustics of a small brachypterous cricket (Rufocephalus sp.;body length 9.6 mm) producing a call with a carrier frequency of approximately 3.2 kHz from a subterranean burrow. Crickets such as Gryllus campestris are approximately twice this length and produce a call frequency close to 5 kHz. The burrow of Rufocephalus opens via a small hole with a diameter of 3.2 mm. The neck of the hole at approximately 1.4 mm depth opens to a vertical two-part burrow with an upper vase-shaped chamber 16.1 mm in height with a diameter of 9.4 mm. This top chamber connects via a 6.4 mm high (diameter 5.2 mm) neck to a more irregular chamber approximately 18 mm high with a width of approximately 11 mm. The walls of the top chamber neck and of the upper part of the lower chamber are smooth and appear to be sealed with saliva.The song has a mean centre frequency of 3.2 kHz and is made up of variable-length trills of pulses of mean duration 15.8 ms. Many song pulses had smooth envelopes and their frequency did not vary by more than ±40 Hz from the centre frequency, with a relative bandwidth Q-3dB of over 50. Other pulses showed considerable amplitude and frequency modulation within the pulse.When driven by external sound, burrows resonated at a mean frequency of 3.5 kHz with a mean quality factor Q of 7.4. Natural-size model burrows resonated at similar frequencies with similar Q values. One cricket,which had previously called from its own burrow at 2.95 kHz, sang at 3.27 kHz from a burrow that resonated at the same frequency.Life-size model burrows driven by external sound resonated at similar frequencies to the actual burrows; models three times life size resonated at one-third of this frequency. In all models, the sound pressure was more-or-less constant throughout the top chamber but fell rapidly in the neck of the burrow; the phase of the sound was effectively constant in the top chamber and neck and fell through approximately 180° in passing from the neck into the lower chamber. A numerical model of the sound flow from region to region gave essentially similar results.A resonant electrical model fed from a high-impedance source with discrete tone bursts at different frequencies showed similar amplitude and frequency modulation to the various types of song pulses that were observed. It is suggested that the high purity of the songs results from close entrainment of the sound-producing mechanism of the insect's wings to the sharply resonant burrow.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference22 articles.

1. Bailey, W. J. (1991). Acoustic Behaviour of Insects. London: Chapman & Hall.

2. Bennet-Clark, H. C. (1970). The mechanism and efficiency of sound production in mole crickets. J. Exp. Biol.52,619-652.

3. Bennet-Clark, H. C. (1987). The tuned singing burrow of mole crickets. J. Exp. Biol.128,383-409.

4. Bennet-Clark, H. C. (1989). Songs and the physics of sound production. In Cricket Behavior and Neurobiology (ed. F. Huber, T. E. Moore and W. Loher), pp.227-261. Ithaca, London: Cornell University Press.

5. Bennet-Clark, H. C. (1995). Insect sound production: transduction mechanisms and impedance matching. In Biological Fluid Dynamics (ed. C. P. Ellington and T. J. Pedley), pp. 199-218. Cambridge: Company of Biologists Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3