Slow muscle power output of yellow- and silver-phase European eels (Anguilla anguilla L.): changes in muscle performance prior to migration

Author:

Ellerby D.J.1,Spierts I.L.1,Altringham J.D.1

Affiliation:

1. School of Biology, University of Leeds, Leeds LS2 9JT, UK and Niels Stensen Foundation, PO Box 20111, The Netherlands. bgydje@leeds.ac.uk

Abstract

Eels swim in the anguilliform mode in which the majority of the body axis undulates to generate thrust. For this reason, muscle function has been hypothesised to be relatively uniform along the body axis relative to some other teleosts in which the caudal fin is the main site of thrust production. The European eel (Anguilla anguilla L.) has a complex life cycle involving a lengthy spawning migration. Prior to migration, there is a metamorphosis from a yellow (non-migratory) to a silver (migratory) life-history phase. The work loop technique was used to determine slow muscle power outputs in yellow- and silver-phase eels. Differences in muscle properties and power outputs were apparent between yellow- and silver-phase eels. The mass-specific power output of silver-phase slow muscle was greater than that of yellow-phase slow muscle. Maximum slow muscle power outputs under approximated in vivo conditions were 0.24 W kg(−)(1) in yellow-phase eel and 0.74 W kg(−)(1) in silver-phase eel. Power output peaked at cycle frequencies of 0.3-0.5 Hz in yellow-phase slow muscle and at 0.5-0.8 Hz in silver-phase slow muscle. The time from stimulus offset to 90 % relaxation was significantly greater in yellow- than in silver-phase eels. The time from stimulus onset to peak force was not significantly different between life-history stages or axial locations. Yellow-phase eels shifted to intermittent bursts of higher-frequency tailbeats at a lower swimming speed than silver-phase eels. This may indicate recruitment of fast muscle at low speeds in yellow-phase eels to compensate for a relatively lower slow muscle power output and operating frequency.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3