Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans

Author:

Saeki S.1,Yamamoto M.1,Iino Y.1

Affiliation:

1. Molecular Genetics Research Laboratory and Department of Biophysics and Biochemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan. iino@ims.u-tokyo.ac.jp

Abstract

While the basic functioning of the nervous system of Caenorhabditis elegans has been extensively studied, its behavioural plasticities have not been fully explored because of the limited availability of assay systems. We report here a simple form of chemotaxis plasticity in this organism: when worms are starved on plates that contain NaCl, their chemotaxis towards NaCl falls dramatically. This conditioning requires both the presence of NaCl and the absence of a bacterial food source, indicating that it is not merely adaptation or habituation, but that it is likely to be a form of associative learning. While chemotaxis towards volatile chemoattractants does not change significantly after conditioning with NaCl, chemotaxis towards other water-soluble attractants does decrease. This suggests that an altered response of a cell or a group of cells specifically involved in chemotaxis towards water-soluble chemoattractants is responsible for the behavioural alteration. The decrease in chemotaxis occurred slowly over 3–4 h of conditioning and returned quickly to the original level when either of the conditioning stimuli, NaCl or starvation, was removed. The application of serotonin partially blocked this reduction in chemotaxis, consistent with the proposed function of this neurotransmitter in food signalling. Using this assay, we have isolated three mutants with reduced plasticity. This assay system expands the opportunities for studying the molecular and cellular mechanisms of behavioural plasticity in C. elegans.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3