Speeds and wingbeat frequencies of migrating birds compared with calculated benchmarks

Author:

Pennycuick C. J.1

Affiliation:

1. School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK

Abstract

SUMMARYSixteen species of birds passing Falsterbo in southwest Sweden during the autumn migration season were observed using short-range optical methods. Air speeds and wingbeat frequencies were measured, reduced to sea level, and compared with benchmark values computed by Flight.bas, a published flight performance program based on flight mechanics. The benchmark for air speed was the calculated sea-level value of the minimum power speed (Vmp). The mean speeds of three raptor species that flew by flap-gliding were below Vmp, apparently because the flap-glide cycle involved slowing down below Vmp when gliding and accelerating back up to Vmp when flapping. The mean speeds of 11 species that flew by continuous flapping were between 0.82Vmp and 1.27Vmp. Two passerine species that flew by bounding had mean speeds of 1.70Vmp and 1.96Vmp, but these high mean speeds reflected their ability to fly faster against head winds. These results do not support predictions from optimal migration theory, which suggest that migrating birds ‘should’ fly faster, relative to Vmp. However, observations were restricted for technical reasons to birds flying below 200 m and may not represent birds that were seriously committed to long-distance migration.The benchmark wingbeat frequency (fref) was derived from dimensional reasoning, not from statistical analysis of observations. Observed wingbeat frequencies ranged from 0.81fref to 1.05fref, except in the two bounding species, whose wingbeat frequencies appeared anomalously high. However, the mechanics of bounding with a power fraction q imply that gravity during the flapping phase is increased by a factor 1/q, and when the value of gravity was so adjusted in the expression for fref, the wingbeat frequencies of the two bounding species were predicted correctly as a function of the power fraction. In small birds with more muscle power than is required to fly at speeds near Vmp, bounding is an effective method of adjusting the specific work in the muscle fibres, allowing conversion efficiency to be maximised over a wide range of speeds.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference33 articles.

1. Alerstam, T. (2000). Bird migration performance on the basis of flight mechanics and trigonometry. In Biomechanics in Animal Behaviour (ed. P. Domenici and R. W. Blake), pp. 105–124. Oxford: Bios.

2. Alerstam, T. and Hedenström, A. (1998). The development of bird migration theory. J. Avian Biol.29, 343–369.

3. Bailey, N. T. J. (1995). Statistical Methods in Biology. Third edition. Cambridge: Cambridge University Press.

4. Greenewalt, C. H. (1962). Dimensional relationships for flying animals. Smithsonian Misc. Collns144, 1–46.

5. Hedenström, A. and Alerstam, T. (1992). Climbing performance of migrating birds as a basis for estimating limits for fuel-carrying capacity and muscle work. J. Exp. Biol.164, 19–38.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3