Autonomic control of heart rate during forced activity and digestion in the snakeBoa constrictor
Author:
Wang Tobias123, Taylor E. W.12, Andrade Denis1, Abe Augusto S.1
Affiliation:
1. Department of Zoology, UNESP Rio Claro, Brazil, 2. School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK and 3. Institute of Biology, Aarhus University, 8000 Aarhus C, Denmark
Abstract
SUMMARYReptiles, particularly snakes, exhibit large and quantitatively similar increments in metabolic rate during muscular exercise and following a meal, when they are apparently inactive. The cardiovascular responses are similar during these two states, but the underlying autonomic control of the heart remains unknown. We describe both adrenergic and cholinergic tonus on the heart during rest, during enforced activity and during digestion (24–36 h after ingestion of 30 % of their body mass) in the snake Boa constrictor. The snakes were equipped with an arterial catheter for measurements of blood pressure and heart rate, and autonomic tonus was determined following infusion of the β-adrenergic antagonist propranolol (3 mg kg–1) and the muscarinic cholinoceptor antagonist atropine (3 mg kg–1).The mean heart rate of fasting animals at rest was 26.4±1.4 min–1, and this increased to 36.1±1.4 min–1 (means ± s.e.m.; N=8) following double autonomic block (atropine and propranolol). The calculated cholinergic and adrenergic tones were 60.1±9.3 % and 19.8±2.2 %, respectively. Heart rate increased to 61.4±1.5 min–1 during enforced activity, and this response was significantly reduced by propranolol (maximum values of 35.8±1.6 min–1), but unaffected by atropine. The cholinergic and adrenergic tones were 2.6±2.2 and 41.3±1.9 % during activity, respectively. Double autonomic block virtually abolished tachycardia associated with enforced activity (heart rate increased significantly from 36.1±1.4 to 37.6±1.3 min–1), indicating that non-adrenergic, non-cholinergic effectors are not involved in regulating heart rate during activity. Blood pressure also increased during activity.Digestion was accompanied by an increase in heart rate from 25.6±1.3 to 47.7±2.2 min–1 (N=8). In these animals, heart rate decreased to 44.2±2.7 min–1 following propranolol infusion and increased to 53.9±1.8 min–1 after infusion of atropine, resulting in small cholinergic and adrenergic tones (6.0±3.5 and 11.1±1.1 %, respectively). The heart rate of digesting snakes was 47.0±1.0 min–1 after double autonomic blockade, which is significantly higher than the value of 36.1±1.4 min–1 in double-blocked fasting animals at rest. Therefore, it appears that some other factor exerts a positive chronotropic effect during digestion, and we propose that this factor may be a circulating regulatory peptide, possibly liberated from the gastrointestinal system in response to the presence of food.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference27 articles.
1. Altimiras, J., Aissaoui, A., Tort, L. and Axelsson, M. (1997). Cholinergic and adrenergic tones in the control of heart rate in teleosts. How should they be calculated? Comp. Biochem. Physiol. 118A, 131–139. 2. Andrade, D. V., Cruz-Neto, A. P. and Abe, A. S. (1997). Meal size and specific dynamic action in the rattlesnake Crotalus durissus (Serpentes: Viperidae). Herpetologica53, 485–493. 3. Axelsson, M. (1988). The importance of nervous and humoral mechanisms in the control of cardiac performance in the Atlantic cod Gadus morhua at rest and during non-exhaustive exercise. J. Exp. Biol. 137, 287–303. 4. Axelsson, M., Wahlqvist, I. and Ehrenstrom, F. (1989). Cardiovascular regulation in the mudpuppy Necturus maculosus at rest and during short-term exercise. Exp. Biol.48, 253–259. 5. Busk, M., Jensen, F. B. and Wang, T. (2000). The effects of feeding on blood gases, acid–base parameters and selected metabolites in the bullfrog Rana catesbeiana. Am. J. Physiol. 278, R185–R195.
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|