Structural flexibility of the intestine of Burmese python in response to feeding

Author:

Starck J.M.1,Beese K.1

Affiliation:

1. Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-Universitat Jena, Erbertstrasse 1, D-07743 Jena, Germany. starck@pan.zoo.uni-jena.de

Abstract

The small intestine of Burmese pythons, Python molurus bivittatus, undergoes a remarkable size increase shortly after feeding. We studied the dynamics, reversibility and repeatability of organ size changes using noninvasive imaging techniques. We employed light and electron microscopy, flow cytometry and immunohistology to study the cytological mechanisms that drive the size changes of the small intestine. Within 2 days of feeding, the size of the small intestine increased to up to three times the fasting value. The size changes were fully reversible and could be elicited repeatedly by feeding. These enormous size changes were possible because the mucosal epithelium of the small intestine is a transitional epithelium that allows for considerable size changes without cell proliferation. Histological evidence suggested that a fluid pressure-pump system (lymphatic, blood pressure) was the driving force that inflated the intestinal villi. The rates of cell proliferation were not elevated immediately after feeding but peaked 1 week later when small intestine size was already declining. In contrast to the current paradigm, we suggest that the small intestine is not part of the previously proposed ‘pay-before-pumping’ model. Instead, the size of the python's small intestine may be upregulated without major metabolic investment. It can occur even if the individual is energetically exhausted. An evolutionary perspective of the transitional epithelium mechanism suggests superior functionality compared with the pay-before-pumping model because it allows for long periods of fasting and depletion of energy reserves, while still enabling the snake to digest prey and absorb nutrients.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference15 articles.

1. Apoptosis: Correlation of cytological changes with biomedical markers in hormone-dependent tissues.;Aschoff;Horm. Metab. Res,1997

2. The gut in feast and famine.;Cossins;Nature,1996

3. Orally applied endotoxin stimulates colonic mucin releasing cells in germfree rats.;Enns;J. Exp. Anim. Sci,1994

4. Response of germfree rat colonic mucous cells to peroral endotoxin application.;Enns;Eur. J. Cell Biol,1996

5. Simultaneous manipulation of intestinal capacities and nutrient loads in mice.;Hammond;Am. J. Physiol,1996

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3