Neuropeptides are ubiquitous chemical mediators: Using the stomatogastric nervous system as a model system

Author:

Skiebe Petra1

Affiliation:

1. Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Neurobiologie, Königin-Luise-Straße 28–30, D-14195 Berlin, Germany

Abstract

SUMMARYThe stomatogastric nervous system (STNS) controls the movements of the foregut and the oesophagus of decapod crustaceans and is a good example for demonstrating that peptides are ubiquitously distributed chemical mediators in the nervous system. The stomatogastric ganglion (STG), one of the four ganglia of the STNS, contains the most intensively investigated neuronal circuits. The other ganglia, including the two commissural ganglia (CoGs) and the oesophageal ganglion (OG), are thought to be modulatory control centres. Peptides reach the STNS either as neurohormones or are released as transmitters. Peptide neurohormones can be released either from neurohaemal organs or from local neurohaemal release zones located on the surface of nerves and connectives. There were thought to be no peptidergic neurones with cell bodies in the STG itself. However, some have recently been described in adults of four species, in addition to a transient expression of peptides during development in two species. None of these peptidergic neurones has been investigated physiologically, in contrast to peptidergic neurones that project to the STG and have cell bodies in either the CoGs or the OG. It has been shown that neurones containing the same peptide elicit different motor patterns, that the peptide transmitter and the classical transmitter are not necessarily co-released and that the effect of a peptidergic neurone depends on its firing frequency and on which other modulatory neurones are co-active. The activity of modulatory projection neurones can be elicited by sensory neurones, and their activity can depend on the firing frequency of the sensory neurone. In addition to being found within the neuropile of ganglia, peptides are present in neuropile patches located within the nerves of the STNS, suggesting that these nerves can integrate as well as transfer information. Furthermore, sensory neurones and muscles exhibit peptide-like immunoreactivity and are modulated by peptides. Bath-applied peptides elicit peptide-specific motor patterns within the STG by targeting subsets of neurones. This divergence is contrasted by a convergence at the level of currents: five different peptides modulate a single current. Peptides not only induce motor patterns but can also switch the alliance of neurones from one network to another or are able to fuse different networks. In general, peptides are the most abundant group of modulators within the STNS; they are ubiquitously present, indicating that they play multiple roles in the plasticity of neural networks.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3