Effects of sublethal ammonia exposure on swimming performance in rainbow trout (Oncorhynchus mykiss)

Author:

Shingles A.1,McKenzie D. J.12,Taylor E. W.1,Moretti A.2,Butler P. J.1,Ceradini S.2

Affiliation:

1. School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK and

2. Business Unit Environment, Centro Elettrotecnico Sperimentale Italiano, Via Reggio Emilia 39, 20090 Segrate (MI), Italy

Abstract

SUMMARYAdult trout Oncorhynchus mykiss fitted with a dorsal aortic catheter were exposed to 288±15μmoll−1 (mean ± s.e.m.) total ammonia for 24h in water at a pH of 8.39±0.02, while swimming at a speed equivalent to 0.75bodylengthss−1 (BLs−1) in a Brett-type tunnel respirometer. The fish were then exposed to stepwise increments in swimming speed (0.25BLs−1 every 30min) until exhaustion. Measurements of oxygen uptake (MO2) and plasma total ammonia levels and pH were made at each speed. Control trout were treated identically but without exposure to ammonia. Ammonia exposure caused an increase in plasma total ammonia level to 436±34μmoll−1, compared to 183±30μmoll−1in control animals (N=6). A significant reduction in total plasma ammonia level was found in both groups during exercise, despite a large negative concentration gradient in those exposed to an elevated concentration of ammonia in water, which may indicate an active excretory process. The overall increase in plasma ammonia levels in exposed trout was associated with a significant reduction in critical swimming speed (Ucrit) to 1.61±0.17BLs−1 from 2.23±0.15BLs−1 in control animals. Ammonia-exposed trout had a significantly higher maintenance metabolic rate (MMR) than control fish, when estimated as the y-intercept of the relationship between swimming speed and MO2. Active metabolic rate (AMR, maximum MO2 as measured at Ucrit) was significantly lower in ammonia-exposed animals, leading to a profound reduction in factorial aerobic scope (AMR/MMR). Reduced Ucrit was also linked to a reduction in maximum tailbeat frequency. Calculation of membrane potentials (EM) in the white muscle of fish swum to Ucrit revealed a significant partial depolarisation of white muscle in ammonia-exposed fish. This may have prevented white muscle recruitment and contributed to the reduced maximum tailbeat frequency and overall impairment of swimming performance in the ammonia-exposed fish.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3