THE effects of tonic lung inflation on ventilation in the American bullfrog Rana catesbeiana Shaw

Author:

Sanders Colin E.1,Milsom William K.1

Affiliation:

1. Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada

Abstract

SUMMARY This study was designed to determine whether lung inflation stimulates or inhibits breathing in frogs by examining the effect of tonic lung inflation on the ‘fictive’ breathing pattern of decerebrate, unidirectionally ventilated bullfrogs. Neural discharge was monitored in the trigeminal nerve as an indication of the frequency and force of contraction of the buccal pump, and in the laryngeal branch of the vagus nerve as an indication of glottal opening, and hence fictive lung ventilation. Based on the temporal coordination of discharge in the trigeminal and vagus nerves during naturally occurring breaths it was possible to characterize the fictive breaths as inflation, deflation or balanced breaths. Increasing lung inflation increased absolute breathing frequency by reducing the duration of apnea between breaths and promoting a change in breathing pattern from no breathing to single breaths, breathing episodes and, finally, to continuous breathing. Associated with this was a decrease in the amplitude and area of the integrated trigeminal electroneurogram associated with the lung breaths, indicative of a reduction in the force of the buccal pump, and a shift in the timing of the trigeminal and vagal discharge, indicative of a shift from inflation to deflation breaths. Taken together the data suggest that lung deflation produces infrequent, large-amplitude inflation breaths or cycles, but that progressive lung inflation changes the breathing pattern to one of high-frequency attempts to deflate the lungs that are largely passive, and accompanied by contractions of the buccal pump that are no larger than those associated with normal buccal oscillations.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference28 articles.

1. D’Angelo, E. and Agostini, E. (1975). Tonic vagal influences on inspiratory duration. Respir. Physiol. 24, 287–302.

2. De Jongh, H. J. and Gans, C. (1969). On the mechanism of respiration in the bullfrog, Rana catesbeiana: a reassessment. J. Morphol. 127, 259–290.

3. De Marneffe-Foulon, C. (1962). Contribution à l’etude du mechanisme et du controle des mouvements respiratoires chez Rana. Annal. Soc. Roy. Zool. Belgique92, 81–132.

4. Finkler, J. and Iscoe, S. (1984). Control of breathing at elevated lung volumes in anesthetized cats. J. Appl. Physiol. 56, 839–844.

5. Foxon, G. E. H. (1964). Blood and respiration. In Physiology of the Amphibia (ed. J. A. Moore), pp. 151–209. New York, Academic Press.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3