The dynamics and scaling of force production during the tail-flip escape response of the California spiny lobster Panulirus interruptus

Author:

Nauen J.C.1,Shadwick R.E.1

Affiliation:

1. Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0204, USA. jnauen@oeb.harvard.edu

Abstract

The tail-flip escape behavior is a stereotypical motor pattern of decapod crustaceans in which swift adduction of the tail to the thorax causes the animal to rotate, move vertically into the water column and accelerate rapidly backwards. Previous predictions that a strong jet force is produced during the flip as the tail adducts to the body are not supported by our simultaneous measurements of force production (using a transducer) and the kinematics (using high-speed video) of tail-flipping by the California spiny lobster Panulirus interruptus. Maximum force production occurred when the tail was positioned approximately normal to the body. Resultant force values dropped to approximately 15 % of maximum during the last third of the flip and continued to decline as the tail closed against the body. In addition, maximum acceleration of the body of free-swimming animals occurs when the tail is positioned approximately normal to the body, and acceleration declines steadily to negative values as the tail continues to close. Thus, the tail appears to act largely as a paddle. Full flexion of the tail to the body probably increases the gliding distance by reducing drag and possibly by enhancing fluid circulation around the body.Morphological measurements indicate that Panulirus interruptus grows isometrically. However, measurements of tail-flip force production for individuals with a body mass (M(b)) ranging from 69 to 412 g indicate that translational force scales as M(b)(0.83). This result suggests that force production scales at a rate greater than that predicted by the isometric scaling of muscle cross-sectional area (M(b)(2/3)), which supports previously published data showing that the maximum accelerations of the tail and body of free-swimming animals are size-independent. Torque (τ) scaled as M(b)(1.29), which is similar to the hypothesized scaling relationship of M(b)(4/3). Given that τ is proportional to M(b)(1.29), one would predict rotational acceleration of the body (α) to decrease with increasing size as M(b)(−)(0.37), which agrees with previously published kinematic data showing a decrease in α with increased M(b).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3