A qualitative and quantitative study of the lung of an ostrich,Struthio camelus

Author:

Maina John N.1,Nathaniel Christopher1

Affiliation:

1. Department of Anatomical Sciences, The University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa

Abstract

SUMMARYThe ostrich lung, with its lack of interparabronchial septa, the presence of very shallow atria and exceptional morphometric refinement, structurally resembles those of small, energetic flying birds, whereas it also displays features characteristic of the flightless ratites in which the neopulmo is relatively poorly developed and a segmentum accelerans may be generally lacking. The large size of the bronchial system of the ostrich may help explain the unique shifts in the airflow pathways that must occur from resting to panting breathing, explaining its insensitivity to acid–base imbalance of the blood during sustained panting under thermal stress. The mass-specific volume of the lung is 39.1 cm3kg−1 and the volume density of the exchange tissue is remarkably high (78.31%). The blood–gas (tissue) barrier is relatively thick (0.56μm) but the plasma layer is very thin (0.14μm). In this flightless ratite bird, the mass-specific surface area of the tissue barrier (30.1 cm2g−1), the mass-specific anatomical diffusing capacity of the tissue barrier for oxygen (0.0022mlO2s−1Pa−1kg−1), the mass-specific volume of pulmonary capillary blood (6.25 cm3kg−1) and the mass-specific total anatomical diffusing capacity for oxygen (0.00073mlO2s−1Pa−1kg−1) are equivalent to or exceed those of much smaller highly aerobic volant birds. The distinctive morphological and morphometric features that seem to occur in the ostrich lung may explain how it achieves and maintains high aerobic capacities and endures long thermal panting without experiencing respiratory alkalosis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3