Mechanical evaluation of theories of neurulation using computer simulations

Author:

Clausi D. A.,Brodland G. W.

Abstract

Current theories about the forces that drive neurulation shape changes are evaluated using computer simulations. Custom, three-dimensional, finite element-based computer software is used. The software draws on current engineering concepts and makes it possible to construct a ‘virtual’ embryo with any user-specified mechanical properties. To test a specific hypothesis about the forces that drive neurulation, the whole virtual embryo or any selected part of it is ascribed with the force generators specified in the hypothesis. The shape changes that are produced by these forces are then observed and compared with experimental data. The simulations demonstrate that, when uniform, isotropic circumferential microfilament bundle (CMB) constriction and cephalocaudal (axial) elongation act together on a circular virtual neural plate, it becomes keyhole shaped. When these forces act on a spherical (amphibian) embryo, dorsal surface flattening occurs. Simulations of transverse sections further show that CMB constriction, acting with or without axial elongation, can produce numerous salient transverse features of neurulation. These features include the sequential formation of distinct neural ridges, narrowing and thickening of the neural plate, skewing just medial to the ridges, ‘hinge’ formation and neural tube closure. No region-specific ‘programs’ or non-mechanical cell-cell communications are used. The increase in complexity results entirely from mechanical interactions. The transverse simulations show how changes to the driving forces would affect the patterns of shape change produced. Hypotheses regarding force generation by microtubules, intercellular adhesions and forces extrinsic to the neural plate are also evaluated. The simulations show that these force-generating mechanisms do not, by themselves, produce shape changes that are consistent with normal development. The simulations support the concept of cooperation of forces and suggest that neurulation is robust because redundant force generating mechanisms exist.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3