Expression of the Sex-lethal gene is controlled at multiple levels during Drosophila oogenesis

Author:

Bopp D.1,Horabin J.I.1,Lersch R.A.1,Cline T.W.1,Schedl P.1

Affiliation:

1. Department of Molecular Biology, Moffett laboratory, Princeton University, NJ 08544.

Abstract

In addition to controlling somatic sexual development in Drosophila melanogaster, the Sex-lethal (Sxl) gene is required for proper differentiation of female germ cells. To investigate its role in germ-line development, we have examined the expression of Sxl in wild-type ovaries and ovaries that are defective in early steps of germ cell differentiation. As in the soma, the basic mechanism for on/off regulation of Sxl relies on sex-specific processing of its transcripts in germ cells. One class of female-sterile mutations, which includes fs(1)1621 and the tumorous-ovary-producing allele of the ovarian tumor gene, otu1, is defective in the splicing process. These mutants have germ lines with high amounts of Sxl RNA spliced in the male mode and a severe reduction of protein levels in the germ cells. Another class of female-sterile mutations produces a phenotype similar to that seen in fs(1)1621 and otu1 but appears to express normal levels of Sxl protein in the germ cells. However, this second class does not show the changes in protein distribution normally observed in wild-type germ cells. In the wild-type germarium, the non-differentiated germ cells show a strong cytoplasmic accumulation of Sxl protein followed, as the germ cells differentiate, by a dramatic reduction and redistribution of the protein into nuclear foci. Interestingly, two female-sterile alleles of Sxl, Sxlf4 and Sxlf5 belong to the second class, which shows persistent cytoplasmic accumulation of Sxl protein. These Sxl female-sterile mutants encode an altered protein indicating that Sxl regulates processes that eventually lead to the changes in Sxl protein distribution. Lastly, we demonstrate that during the final stages of oogenesis several mechanisms must operate to prevent the progeny from inheriting Sxl protein. Conceivably, this regulation safeguards the inadvertent activation of the Sxl autoregulatory feedback loop in the male zygote.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3