Expression of epithelial alkaline phosphatase in segmentally iterated bands during grasshopper limb morphogenesis

Author:

Chang W.S.1,Zachow K.R.1,Bentley D.1

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley 94720.

Abstract

Although the study of rostral-caudal segmentation of the insect body has been a rich source of information about embryonic pattern formation, relatively little is known of the process of proximal-distal segmentation of insect appendages. Here we demonstrate that during the period of limb segmentation, five segmentally iterated, sharply demarcated bands of cell surface alkaline phosphatase activity are expressed in embryonic grasshopper limbs. These bands span each intersegmental boundary in the limb as well as one boundary within the tarsus. Within appendages, expression is restricted to epithelial cells, where activity is present on both apical and basolateral surfaces. This epithelial alkaline phosphatase remains active at neutral pH, is insensitive to levamisole inhibition, and is strongly inhibited by nucleoside monophosphates. Treatment of embryos with phosphatidylinositol-specific phospholipase C releases almost all visible chromogenic activity, indicating that the epithelial alkaline phosphatase is anchored to the plasma membrane by glycosyl-phosphatidylinositol. When material released by phosphatidylinositol-specific phospholipase C is separated on native polyacrylamide gels, a single broad band of enzymatic activity is detected following incubation with substrate. A polyclonal antiserum raised against a 55 × 10(3) M(r) alkaline phosphatase from shrimp recognizes a single band of 56 × 10(3) M(r) on immunoblots of grasshopper membrane proteins. The spatially restricted expression of epithelial alkaline phosphatase suggests that it may be involved in epithelial cell rearrangements or shape changes associated with limb segmentation and morphogenesis. It also may contribute to definition of axon routes in the limb, since pioneer afferent growth cones turn at, and migrate along, the edge of one alkaline phosphatase-expressing epithelial domain.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3