E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model

Author:

Lamb Laura E.12,Knudsen Beatrice S.3,Miranti Cindy K.1

Affiliation:

1. Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, USA

2. Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA

3. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Abstract

The androgen receptor (AR) is expressed in differentiated secretory prostate epithelial cells in vivo. However, in the human prostate, it is unclear whether androgens directly promote the survival of secretory cells, or whether secretory cells survive through androgen-dependent signals from the prostate stroma. Biochemical and mechanistic studies have been hampered by inadequate cell-culture models. In particular, large-scale differentiation of prostate epithelial cells in culture has been difficult to achieve. Here, we describe the development of a differentiation system that is amenable to functional and biochemical analysis and its application to deciphering the survival pathways in differentiated AR-expressing epithelial cells. Confluent prostate epithelial cell cultures were treated with keratinocyte growth factor (KGF) and dihydrotestosterone. After 2 weeks, a suprabasal cell layer was formed in which cells no longer expressed α2, α3, α6, αv, β1 or β4 integrins or p63, K5, K14, EGFR, FGFR2IIIb or Bcl-2, but instead expressed AR and androgen-induced differentiation markers, including K18, K19, TMPRSS2, Nkx3.1, PMSA, KLK2 and secreted prostate-specific antigen (PSA). Differentiated prostate cell survival depended on E-cadherin and PI3K, but not KGF, androgen, AR or MAPK. Thus survival of differentiated prostate epithelial cells is mediated by cell-cell adhesion, and not through androgen activity or prostate stroma-derived KGF.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3