Recycling endosomes attach to the trans-side of Golgi stacks in Drosophila and mammalian cells

Author:

Fujii Syara1,Kurokawa Kazuo2ORCID,Inaba Ryota1,Hiramatsu Naoki1,Tago Tatsuya1,Nakamura Yuri1,Nakano Akihiko2ORCID,Satoh Takunori1ORCID,Satoh Akiko K.1ORCID

Affiliation:

1. Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan

2. Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Abstract

Historically, the trans-Golgi network (TGN) has been recognized as a sorting center of newly synthesized proteins, whereas recycling endosome (RE) is a compartment where endocytosed materials transit before being recycled to the plasma membrane. However, recent findings revealed that both the TGN and RE connect endocytosis and exocytosis, and thus are functionally overlapping. Here we report, in both Drosophila and microtubule-disrupted HeLa cells, that REs are interconvertible between two distinct states, namely Golgi-associated REs and free REs. Detachment and reattachment of REs and Golgi stacks were often observed. These two types of REs were in the route of Glycosylphosphatidylinositol-anchored cargo protein released from the endoplasmic reticulum, but not in that of Vesicular stomatitis virus G protein. In plants, it has been established that there are two types of TGNs: the Golgi-associated TGN and Golgi-independent TGN. Dynamics of REs in both Drosophila and mammalian cells revealed strong similarity to plant TGNs. Together with the molecular-level similarity, these results indicate that fly/mammalian REs are equivalent organelles to TGNs in plants, and evoke reconsideration of identities and functional relationships between REs and TGNs.

Funder

Precursory Research for Embryonic Science and Technology

KAKENHI

Sumitomo Foundation for Basic Science Research Projects

Astellas Foundation for Research on Metabolic Disorders

Female Researcher Joint Research Grant from Hiroshima Univ.

funder-list

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3