Quail-duck chimeras reveal spatiotemporal plasticity in molecular and histogenic programs of cranial feather development

Author:

Eames B. Frank1,Schneider Richard A.1

Affiliation:

1. Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514,USA

Abstract

The avian feather complex represents a vivid example of how a developmental module composed of highly integrated molecular and histogenic programs can become rapidly elaborated during the course of evolution. Mechanisms that facilitate this evolutionary diversification may involve the maintenance of plasticity in developmental processes that underlie feather morphogenesis. Feathers arise as discrete buds of mesenchyme and epithelium, which are two embryonic tissues that respectively form dermis and epidermis of the integument. Epithelial-mesenchymal signaling interactions generate feather buds that are neatly arrayed in space and time. The dermis provides spatiotemporal patterning information to the epidermis but precise cellular and molecular mechanisms for generating species-specific differences in feather pattern remain obscure. In the present study, we exploit the quail-duck chimeric system to test the extent to which the dermis regulates the expression of genes required for feather development. Quail and duck have distinct feather patterns and divergent growth rates, and we exchange pre-migratory neural crest cells destined to form the craniofacial dermis between them. We find that donor dermis induces host epidermis to form feather buds according to the spatial pattern and timetable of the donor species by altering the expression of members and targets of the Bone Morphogenetic Protein, Sonic Hedgehog and Delta/Notch pathways. Overall, we demonstrate that there is a great deal of spatiotemporal plasticity inherent in the molecular and histogenic programs of feather development, a property that may have played a generative and regulatory role throughout the evolution of birds.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference110 articles.

1. Alberch, P. (1985). Problems with the interpretation of developmental sequences. System. Zool.34,46-58.

2. Albrecht, U. E. G., Helms, J. A. and Lin, H.(1997). Visualization of gene expression patterns by in situ hybridization. In Molecular and Cellular Methods in Developmental Toxicology (ed. G. P. Daston), pp.23-48. Boca Raton, FL: CRC Press.

3. Ashique, A. M., Fu, K. and Richman, J. M.(2002). Signalling via type IA and type IB bone morphogenetic protein receptors (BMPR) regulates intramembranous bone formation,chondrogenesis and feather formation in the chicken embryo. Int. J. Dev. Biol.46,243-253.

4. Atit, R., Conlon, R. A. and Niswander, L.(2003). EGF signaling patterns the feather array by promoting the interbud fate. Dev. Cell4, 231-240.

5. Bee, J. and Thorogood, P. (1980). The role of tissue interactions in the skeletogenic differentiation of avian neural crest cells. Dev. Biol.78,47-66.

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3