Fission yeast nucleolar protein Dnt1 regulates G2/M transition and cytokinesis through downregulating Wee1 kinase

Author:

Yu Zhi-yong,Zhang Meng-ting,Wang Gao-yuan,Xu Dan,Keifenheim Daniel,Franco Alejandro,Cansado Jose,Masuda Hirohisa,Rhind Nick,Wang Yamei,Jin Quan-wen

Abstract

Cytokinesis involves temporally and spatially coordinated action of the cell cycle, cytoskeletal and membrane systems to achieve separation of daughter cells. The septation initiation network (SIN) and mitotic exit network (MEN) signaling pathways regulate cytokinesis and mitotic exit in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. Previously, we have shown that in fission yeast the nucleolar protein Dnt1 negatively regulates SIN pathway in a manner independent of Cdc14-family phosphatase Clp1/Flp1, but the detailed mechanism of how Dnt1 modulates this pathway has remained elusive. In contrast, it is clear that its budding yeast relative, Net1/Cfi1, regulates the homologous MEN signaling pathway through sequestering the Cdc14 phosphatase in the nucleolus before mitotic exit. In this study, we have obtained evidence indicating that dnt1+ positively regulates the G2/M transition during cell cycle. By conducting epistasis analyses measuring the cell length at division of double mutants between dnt1Δ and genes involved in G2/M control, we found a link between dnt1+ and wee1+. Furthermore, we showed that elevated protein level of mitotic inhibitor Wee1 kinase and the corresponding attenuation in Cdk1 activity is responsible for the rescuing effect of dnt1Δ on SIN mutants. Finally, our data also suggest that Dnt1 modulates Wee1 activity in parallel with SCF-mediated Wee1 degradation. Therefore, this study reveals an unexpected missing link between the nucleolar protein Dnt1 and the SIN signaling pathway which is mediated by Cdk1 regulator Wee1 kinase. Our findings also define a novel mode of Wee1/Cdk1 regulation which is important for the integration of signals controlling SIN pathway in fission yeast.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3